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Stability and Convergence 
of the Peaceman-Rachford ADI Method 

for Initial-Boundary Value Problems 

By W. H. Hundsdorfer and J. G. Verwer 

Abstract. In this paper an analysis will be presented for the ADI (alternating direction 
implicit) method of Peaceman and Rachford applied to initial-boundary value problems 
for partial differential equations in two space dimensions. We shall use the method 
of lines approach. Motivated by developments in the field of stiff nonlinear ordinary 
differential equations, our analysis will focus on problems where the semidiscrete system, 
obtained after discretization in space, satisfies a one-sided Lipschitz condition with a 
constant independent of the grid spacing. For such problems, unconditional stability 
and convergence results will be derived. 

1. Introduction. For many years splitting methods have proved valuable in the 
numerical solution of time-dependent, multi(space)-dimensional partial differential 
equations (PDE's). The general idea of splitting is to attack a multi-dimensional 
problem in such a way that only one-dimensional computations are required. This 
idea has led to the development of a great variety of so-called alternating direction 
implicit (ADI) methods, locally one-dimensional (LOD) or fractional step methods, 
and hopscotch type methods [6]. ADI methods were first introduced by Peaceman, 
Douglas and Rachford for the solution of parabolic (and elliptic) equations in two 
[13] and three [3] space variables. The present paper is devoted to a study of 
the stability and convergence properties of the original Peaceman-Rachford ADI 
method when applied to initial-boundary value problems. 

The idea of splitting has to do with the time integration, rather than with the 
space discretization. This suggests to adopt the method of lines approach [9], which 
has the advantage that it enables us to formulate the Peaceman-Rachford (PR) 
method in a very compact way for a wide class of (two-dimensional) initial-boundary 
value problems, including nonlinear ones (method (2.2)). Another advantage is 
that it enables us to directly use ideas and results from the field of stiff ordinary 
differential equations (ODE's), which in the last years has witnessed interesting 
developments on nonlinear stability and convergence [1]. 

Let us give a brief outline of the paper. Section 2 is devoted to some preliminary 
results which are relevant for the remainder. There we link the PR method with an 
LOD type splitting method, based on the implicit midpoint rule. Loosely speaking, 
this ADI/LOD link (made before in [8]) reveals that, with respect to step-by-step 
stability, the ADI method will behave very much the same as the fully implicit 
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midpoint rule. By the notion of step-by-step stability we mean the stability of 
the ODE integration formula for evolving time (A-stability is such a property). 
This observation is of interest, since the implicit midpoint rule is known to possess 
unconditional stability properties for nonlinear, stiff ODE problems satisfying a 
one-sided Lipschitz condition. In the remainder of the paper, we therefore assume 
such a condition to hold for the semidiscrete system under consideration. 

The stability analysis for the PR method is carried out in detail in Section 3. Our 
analysis concentrates on unconditional stability, by which we mean that no relation 
is assumed between the stepsize in time and the space grid refinement. We present 
a result valid for nonlinear, noncommuting splitting operators, which refutes to 
some extent the often expressed view that for step-by-step stability commutativity 
is crucial. In the same section we also point out, through a numerical illustration, 
that when implementing the PR method on the computer for nonlinear problems, 
care must be exercised in solving the arising systems of nonlinear algebraic equa- 
tions. If this is not done with sufficient accuracy, then the stability may deteriorate 
severely. This observation is of practical significance, because in applications one 
often linearizes the problem, which always can be interpreted as carrying out, in a 
certain way, one step of the iterative Newton process. The point of view we take 
here is that in many cases instability is an artifact of the linearization, and not of 
the ADI scheme itself. 

Sections 4 and 5 are devoted to full convergence properties of the PR scheme. 
Here we distinguish between nonlinear (Section 4) and linear (Section 5) problems. 
The prefix full means that we compare the numerical solution directly with the exact 
PDE solution. More specifically, the main objective of our convergence analysis is 
the order in time p appearing in a global error bound of the type 

||Un-Uh (tn) || < C1T9 + C2 max liah (t) 11, 

where Un is the numerical solution at time t = tn Uh (tn) the PDE solution at 
t = tn restricted to the imposed space grid, ah the spatial truncation error, and Cl 
and C2 are constants completely independent of the stepsize r and the space grid 
refinement. This independency means that we examine unconditional convergence. 
In the nonlinear case we prove such convergeace with order p = 1, which is one 
less than the order on a fixed space grid. The discrepancy is caused by influence 
of the boundary conditions, not by lack of smoothness. Here the notions of local 
and global order reduction come into play, which are elucidated in an extensive 
discussion devoted to the linear case. There we present also convergence results 
with p = 2 and briefly outline how the so-called Fairweather-Mitchell correction 
fits into the convergence theory. 

2. Preliminaries. As mentioned already in the introduction, we follow in this 
paper the method of lines approach. This enables us to formulate the Peaceman- 
Rachford method in a compact way and, in addition, allows for the general treat- 
ment we aim at. In the present section we have collected some preliminary material. 
Subsection 2.1 deals with the time integration formula, while Subsection 2.2 con- 
tains information on semidiscrete problems. 
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2.1. The Peaceman-Rachford Integration Formula. Consider the real Cauchy 
problem for the nonlinear ODE system 

(2.la) U = F(t, U), 0 < t < T, U(O) = Uo, 

where U0 E RM and F: [0, T] x Rm M RM are given. This system is assumed to 
originate from spatial discretization of an initial-boundary value PDE problem. For 
the moment there is no need to be more specific about (2.1a). We suppose that F 
can be decomposed into two simpler functions F1 and F2, with 

(2.lb) Fi(t,v) + F2(t,v) = F(t,v) for all (t,v) E [0,T] x RM. 

The meaning of this linear splitting will become clear later. 
The Peaceman-Rachford integration formula we examine in this paper is then 

given by 

(2.2) Un+1/2 = Un + 17F1 (tn+ 1/2 Un+1/2) + '-rF2 (tn Un), 

Un+ 1 = Un+ 1/2 + 1 rF1 (tn+ 1/2, Un+ 1/2) + fF2 (tn+ 1, Un+ 1) - 

Here tn+1/2 = tn +T/2, tn+1 = tn +r for n > 0, and Un+1/2, Un+ are the approx- 
imations to the exact solutions U(t) of (2.1) at time t = tn+1/2, tn+1, respectively. 
In this one-step integration formula (Un -* Un+i), Un+1/2 is always considered to 
be an intermediate, auxiliary vector like in Runge-Kutta methods. In view of the 
one-step nature, it is easy to use variable stepsizes r. However, in the remainder 
we restrict ourselves to constant values of r. 

From (2.2) two well-known integration methods can be recovered. If we put 
F1 = 0, F2 = F, the trapezoidal rule is obtained, while for F1 = F, F2 = 0, (2.2) 
reduces to the implicit midpoint rule 

(2.3) Un+1 = Un + rF(tn+1/2, 
1 Un + Un+1). 

Inspection of (2.2) and (2.3) immediately reveals the characteristic features of (2.2). 
This method is alternately implicit in F1 and F2, whereas (2.3) is (fully) implicit 
in F. In our application of (2.2), following Peaceman and Rachford [13], F stands 
for a discretized PDE operator in two space dimensions, and F1 and F2 are both 
assumed to be "one-dimensional". This implies that, per step, the costs involved 
in solving the implicit relations in (2.2) will be substantially lower than in a fully 
implicit method like (2.3). 

Like the implicit midpoint and trapezoidal rule, the PR formula (2.2) has the 
(usual) order of consistency two for any given ODE system (2.1). This follows 
readily from a straightforward Taylor expansion. We mean here consistency with 
respect to the ODE solution U, not with respect to the underlying PDE solution. 
In Sections 4, 5 we will be more specific about consistency and convergence. There, 
we will compare the approximations Un directly with the PDE solution. 

One of the points we wish to emphasize in this paper is that the stability of the 
PR method is in a sense governed by the stability of an implicit midpoint LOD 
method. To see this, we rewrite (2.2) in Euler fashion as 

Yn+1/2 = Un + rF2 (tn Un), 

)Un+1/2 = Yn+1/2 + TF1 (tn+1/2, Un+1/2), 

Yn+(4 = Un+L1/2 + TF1 (tn+1/2,Un+1/2), 

Un+1 = Yn+1 + 2 rF2 (tn+1, Un+ 1) 
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for n > 0. This can be rearranged as a first step 

(2.5a) Y1/2 = Uo + rF2 (to, Uo) 

followed by 

(2.Sb) { Un+1/2 = Yn+1/2 + 1TF1 (tn+ 1/2 Un+ 1/2) 
Yn+i = Un+ 1/2 + 2TF1 (tn+ 1/2 Un+1/2), 

(2.5c) { Un+1 = Yn+1 + 2 TF2 (tn+l X Un+l), 

Yn+3/2 = Un+l + 1TF2(tn+liUn+1) 

for n > 0. Note that now (2.5b) constitutes the implicit midpoint rule 

(2.6) Yn+ = Yn+1/2 + TF1 (tn+1/2 X 2 Yn+1/2 + 2 Yn+ 1) 

Likewise, (2.5c) gives 

(2.7) Yn+3/2 = Yn+1 + -F2(tn+ 1Yn+ 1 + 2Yn+3/2)E 

Consequently, apart from start and completion, the PR scheme is equivalent to 
an alternate application of the implicit midpoint schemes (2.6) and (2.7). The 
combination of these two is just a locally one-dimensional (LOD) method. It thus 
follows that this implicit midpoint LOD method governs the step-by-step stability 
of the PR method. 

We note that the link between ADI and LOD has been made before by Gourlay 
and Mitchell [8]. We shall use it in our stability analysis presented in Section 3, 
although in a slightly different manner than above. 

2.2. The Semidiscrete Problem. The stability and convergence analysis presented 
in the remainder of this paper is centered around the semidiscrete problem (2.1). 
This means that in a large part of our analysis there is no need to be specific about 
the underlying 2-dimensional PDE and its spatial discretization. The formulation 
(2.1) indicates that we have finite difference discretizations in mind, but finite 
element methods (continuous time Galerkin) could also be considered. 

Let Oh be a space grid covering the spatial domain Q C R2 of the PDE. The 
vectors U, F E RM in (2.1) can be viewed as gridfunctions, each component (or set 
of components for nonscalar PDE's) corresponding to a value on a gridpoint of QZh. 

The positive parameter h refers to the grid distance, which may vary over the grid. 
In what follows, the limit h -- 0 means that the space grid is refined arbitrarily far 
in a suitable manner. We emphasize that the dimension M of U and F depends on 
h. This dependence is suppressed in our notation. We assume that the boundary 
conditions on r, the boundary of [, are incorporated in the function F. 

Let u(x, t) (x E [2U r, t E [0, T]) be the exact PDE solution. The (pointwise) 
restriction of u to [h will be denoted by Uh. In our convergence analysis we will 
compare the fully discrete numerical solutions Un to Uh (tn). For this analysis we 
need the space truncation error ah(t), defined by 

(2.8) ah(t) = Uh(t)-F(t, Uh(t)) for 0 < t <T. 

It will be assumed that (2.1) is consistent with the underlying initial-boundary 
value problem, in the sense that 

(2.9) max llah(t)-- 0 as h -O. 
O<t<T 



THE PEACEMAN-RACHFORD ADI METHOD 85 

Throughout this paper, llwll denotes a chosen norm for M-dimensional vectors w, 
generated by an inner product (v, w) on RM. Likewise, we denote the induced 
matrix norm 

IAII = sup IlAwll/llwIl 
w$O 

for A E L(RM), the space of real M x M matrices. 
Our stability and convergence analysis will be restricted to semidiscrete problems 

satisfying the one-sided Lipschitz condition 

(2.10) (Fi(t, wi) - Fi(t, w), wiv - w) < vIliv - wll2 (i = 1, 2) 

for arbitrary w, wv in RM and 0 < t < T. Essential hereby is that the one-sided 
Lipschitz constant v is independent of h, that is, of the grid spacing. We shall 
assume, for convenience, that v < 0, but this is not essential for what follows. 

Condition (2.10) implies the exponential stability result 

(2.11) jjU(t) - U(t)jj < e2v'tjlU(0) - U(0)11j 0 < t < T, 

valid uniformly in h, for any pair of semidiscrete solutions U, U of (2.1) [1]. It also 
implies that the spatial error Uh(t) -U(t) satisfies the bound (cf. [19]) 

(2.12) JIUh(t) - U(t)ll < 1 max IlIa(s)ll, 0 < t < T, 
2v O<s<t 

provided U(O) = Uh(O). Here one should read t for (e2vt - 1)/2v in case v = 0. 
The well-posedness inequality (2.11) indicates that condition (2.10) is a fairly 

natural one. When combined with a suitable space discretization, interesting classes 
of PDE problems can be shown to satisfy (2.10). As an example we mention the 
semilinear heat equation 

(2.13) Ut = (a, (x, y, t)ux)x + (a2 (x, y, t)uY)Y + s(x, y, t, u), 

with ai strictly positive and as/9u < v. It is this type of equation for which ADI 
methods were originally developed. 

As a word of warning, we should also note that many semidiscrete problems 
exist for which it may be very cumbersome to verify (2.10) for a certain norm, of 
course assuming such a norm exists. For example, solution-dependent coefficients 
ai in (2.13) cause difficulties here. Finally, the restriction that we let w, w lie in 
the whole of RM is not essential and is made only for convenience of presentation. 
In actual, nonlinear applications, it suffices to verify (2.10) with wZ' = uh(t) and w 
lying in a tube around Uh(t), 0 < t < T. 

To conclude this preliminary section, we recall that in the method of lines liter- 
ature, semidiscrete PDE's are often treated as stiff ODE's [1], [16]. In fact, many 
results in the nonlinear stability theory for stiff ODE's relate to problems satisfying 
a one-sided Lipschitz condition like (2.10). Important parts in our stability and 
convergence analysis presented in the remainder of this paper do originate from the 
field of stiff ODE's. 

3. Stability. The entire Section 3 is devoted to stability. We will present a 
stability result for the PR method (2.2) which is valid for any ODE system (2.1) 
satisfying the one-sided Lipschitz condition (2.10) (so, F1 and F2 may be nonlinear 
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and noncommuting). For simplicity of presentation it will be assumed that (2.10) 
holds with v < 0. The results can be easily extended to the case v > 0. 

We will frequently use the following norm inequality for rational functions of 
matrices, basically due to von Neumann (cf. [1, Theorem 2.3.11). 

LEMMA 3. 1. Let r(z) be a rational function, and A an M x M matrix satisfying 
(Aw, w) < vIIWI12 for all w E RM. Then we have, for all r > 0, 

llr(rA) 11 < sup{lr(z) 1: z E C, Re(z) < rvl}. 0 

3.1. A General Stability Inequality. Along with (2.2) we consider the perturbed 
PR scheme 

(=Un+12 Un + t 2 + TF2 (tnU) rn+61/2, 

Un+ = Un+1/2 + 2rFI(tn+ 1/2 Un+1/2) + 'TF2(tn+ 1 U1n+) + 'r6n+ 1 

The perturbations 6j may stand for round-off errors, errors due to nonexactly solv- 
ing the implicit relations, or for discretization errors. Let 

(3.2) eFj=Uj-Uj forj=n,n+1/2andn>O. 

By subtracting (2.2) from (3.1) and using the mean value theorem, we obtain the 
following recursion for the errors, 

(3.3) 2&n+1/2 =En + 2A1,n+1/2en+1/2 + 2A2,nEn + 6n+1/2, 

Cn+l = -n+1/2 + 'Ai,n+1/2En+1/2 + rA2,n+len+l + 'rn+l1 

where 
1 

(3.4) Aij = j F'(tj, 0Uj + (1 - O)Uj) dO, Fi'(t, w) = dFi(t, w)/lw 

for i = 1, 2 and j = n, n + 1/2. We now eliminate En+1/2 from (3.3) to obtain 

(3.5) En+1 = RnEn +TPn+l, 

where 

(3.6) Rn = (I - 1rA2,n+1)-1r(rA1,n+ii2)(I+ 2rA2,n) 

(3.7) Pn+1 = (I - A2n+ ) 1 [r(Al,n+1/2) n+1/2 + bn+ 1 

and r(z) = (1 - z/2)(-1( + z/2) is the familiar stability function of the implicit 
midpoint rule. 

We note that as a consequence of the one-sided Lipschitz condition (2.10) with 
v < 0, all operations above are justified for arbitrary r > 0. The implicit rela- 
tions are uniquely solvable, and the following matrix norm inequalities follow from 
Lemma 3.1, 

(3.8) IIr(rAij)II < 1 for all r > 0, 

(3.9) jj(I - 2rAij) 1- < 1 for all r > 0. 

This lemma also shows that when v > 0, the upper bound 1 in (3.8) is to be 
replaced by (1 - rvl/2)-1(1 + rv/2) and the corresponding range for r by rv < 2. 
Similarly, for v < 0 the upper bound 1 in (3.9) can be sharpened to (1 -rv/2)-l 
for all r > 0, while for v > 0 this same bound holds for rv < 2. Essential for 



THE PEACEMAN-RACHFORD ADI METHOD 87 

application to PDE's of these inequalities is their validity uniformly in the mesh 
width of the space grid. 

Direct application of (3.8) to obtain a bound for IIRnjI is not possible in general, 
because of the fact that A2,n may vary with n, and that A2,n and Ai,n+1/2 need 
not commute. Should A2 be independent of n and commute with the matrices 

A1,n+1/2, then Rn = r(i-A2)r(rA1,n+1/2), so that IIRnll < 1 for arbitrary r > 0. In 
this case we immediately derive from (3.5)-(3.9) the global error bound 

(3.10) licnII < II-ojI + 2D for all r > 0, n > 1, 

where D is an upper bound for all I Ij6I, j = n,n + 1/2 and n > 0. This error 
bound expresses stability of the PR scheme with respect to initial errors eo and 
perturbations 6j. 

We now consider the general case (where the matrices do not commute and A2,n 
varies with n), and introduce the following transformation of the errors en for n > 0, 

(3.11) ;n = (I -TA2n)En 

These transformed errors satisfy 

(3.12) En+1 = Rn n + TPn+i X 

with 

(3.13) Rn = r(rAj,n+1/2)r(rA2,n), (3.13) = r,A 
(3.14) Pn+l = r(rA1Pn+1/2)6n+1/2 + 6n+l. 

The effect of this transformation is that the new amplification operator Rn is fac- 
tored into two operators, both with norm < 1, like in LOD methods [18], which 
gives us the global bound 

(3.15) j,nij < ? IVoII + max II|PkII for all r > 0, n > 1. 
1<k<n 

Since IlEnlI < ?i nil and IIVn+11 < IISn+1/211 + 116n+11 (cf. (3.8), (3.9)), we obtain 
the following stability result. 

THEOREM 3.2. Consider (2.2) and (3.1) with perturbations 116ll1 < D. Suppose 
the one-sided Lipschitz condition (2.10) holds with v < 0. Then the errors En = 

n- Un satisfy 

(3.16) IIEn II < II (I - trA2,o)E |II + 2D for all r > 0, n > 1, 

where A2,0 is given by (3.4). 0 

The transformation (3.11) leading to this result is inspired by the ADI-LOD link 
outlined in Subsection 2.2. For linear problems with constant coefficients a similar 
result was obtained by Douglas and Gunn [2]. 

The bound (3.16) expresses stability of the PR scheme with respect to the trans- 
formed initial error to and the original perturbations 6j. We will comment on IIsoll 
in the next subsection. For the moment we note that if IlIoll < CIleoll with C > 0 
independent of h (for instance if s0 = 0 or e0 is a smooth gridfunction, so that 

IjA2,OEOjj < C'lie0ll), then (3.16) shows unconditional stability without the com- 
mon assumptions that F1 and F2 are linear and commuting. Note that when A2,n 
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is independent of n and commutes with Al,n+1/2, no additional smoothness of co 
is required (cf. (3.10)). 

3.2. Stabilization of the First Step. The transformed initial error ?0 = 

(I - A2,0)60 can be interpreted as the difference of two explicit Euler steps 
with negative stepsize -r, 

(3.17) co = [Uo - lrF2(to, Uo)] - [Uo - rF2 (to, Uo)]. 

In general, we may have lIeolI > Ileoll, because of the explicitness in (3.17). Of 
course, if e0 is negligible, for instance if round-off is the only error source, then 
60 will be small for reasonable values of h. However, if e0 is not very small, for 
example if Uo is obtained from experimental data with significant errors, then 60 
may become quite large and grow with spatial refinement. In such a situation 
we can stabilize the PR scheme by computing the first approximation U1 by the 
backward Euler-LOD method, and apply (2.2) only for n > 1. 

We thus consider the scheme with first step 

(3.18a) U1/2 = UO +rFl(t4/2, Ul/2), U1 = U1/2 +rF2(tli,Ul), 

and for n= 1, 2,3,.... 

(3.18b) Un+1/2 = Un + 2 rF1(tn+1/2X Un+1/2) + 2TF2(tnX Un)X 

Un+l = Un+1/2 + l'-Fi(tn+l/2,Un+1/2) + -rF2(tn+l,Un+l). 

On a fixed space grid the LOD scheme has only order 1 in time, but since we only 
perform one LOD step, the order of the process (3.18) will still be 2 on fixed space 
grids. Assume as before that (2.10) holds with v < 0. Repeating the stability 
analysis of the previous section, we now obtain 

(3.19) lljnII < ||(I - lrA2,1)e111 + 2D for all r > 0, n > 2 

with D an upper bound for the lljjll (j = 3/2,2,5/2,...). The error e1 is now 
given by 

(3.20) E1/2 = (I - TA,1/2)l [60 + rT1/2]i 61 = (I - TA2,1) 1[61/2 + r61], 

where r6112, r61 are perturbations on the right-hand side of (3.18a). By using 
Lemma 3.1, it follows that 

(I1- 2rA2, 1)eI ? 11(I- 2rA2,l)(I-TA2,l) 11lieu12 +r61I1 

< I16/211 +T116111 < lltEol +T(II61/211 + 116111). 

Thus we obtain for scheme (3.18) the stability result 

(3.21) llVnll ?< IEolt + (11611211 + 116|11) + 2D for all r > 0, n > 1. 

Amplification of E0 through to is thus prevented. 
We have no practical experience with scheme (3.18). In some numerical exper- 

iments with disturbed initial values, no large errors were found in the original PR 
scheme, so that there was little need for stabilization. We think that starting with 
one LOD step (or a few) may be advantageous in situations where c0 contains 
very high frequencies. Like the trapezoidal rule and implicit midpoint rule, the 
ADI scheme damps such high frequency error components very slowly, whereas the 
LOD scheme has strong damping properties [7], [20]. 
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3.3. A Practical Observation. The PR scheme is implicit, and thus in actual ap- 
plication nonlinear algebraic equations have to be solved by an appropriate iterative 
method. Because the implicitness is "one-dimensional", it is feasible to implement 
a Newton-Raphson type method using a direct (band) solver for the arising linear 
systems, as it is customary in the field of stiff ODE's. 

Let Un denote the numerical values generated by an implemented PR scheme in 
an actual application. These numerical values can be thought of as being solutions 
of the perturbed scheme (3.1), where the 6j are errors arising from approximately 
solving the implicit relations, or, in other words, for stopping the iteration process. 
If the conditions of Theorem 3.1 hold, one can conclude that the implementation 
is stable if the stopping criterion is based on the residual test llll < [prescribed 
tolerance]. 

In applications one frequently circumvents the difficulties connected with the so- 
lution of nonlinear algebraic equations by applying linearization, which corresponds 
to using just one iteration, in one way or another, of a Newton-Raphson type it- 
erative process. In the above setting this means that the 6j are not controlled, 
and that, consequently, the stability may deteriorate. The following numerical ex- 
ample, quoted from van der Houwen and Sommeijer [10], serves to illustrate this 
phenomenon. 

Consider the nonlinear parabolic equation 

(3.22) Ut = 3(u'u,), + 3(u2u,)Y + xyu - 9t2(x2 + y2)U3 

with exact solution u(x, y, t) = exp(xyt), on the unit square 0 < x, y < 1 and 
O < t < 1. We assume Dirichlet boundary conditions. On a uniform grid, with 
mesh width h in both directions, we apply the difference formula (similar in y- 
direction) 

(u'ux)xl (x,,y,) - z -2I2(U+121+u12,)1+ (U2U)sI(XtyS) h-{ut+1/2 JUi+1,J - U+1/2,j + U%?-1/2sJ)Uii + U%? 1/2,JUi-1A1} 

where ui?1/2,j = (ui?i,j+ui,j)/2. In the standard way, including equal distribution 
of the term xyu _ 9t2 (x2 + y2)u3 over F, and F2 and natural ordering of gridpoints, 
one can now set up the semidiscrete system (2.1) and apply scheme (2.2) for the 
time integration. 

Table 3.1 shows the errors at t = 1, measured in the discrete L2-norm. In the 
left part, the errors are given for the case where only one iteration step of the 
Newton-Raphson process is used for solving the nonlinear algebraic equations, and 
the entries in the right part correspond to two iterations (which is sufficient for 
these r, h values; more iterations do not alter accuracy). The deterioration of 
stability is clearly visible. 

We emphasize once more that this deterioration of stability is an artifact of the 
chosen implementation. The experiment shows that the PR method itself is stable 
for the chosen values of r and h. Unfortunately, we do not know whether the one- 
sided Lipschitz condition (2.10) is valid, in some suitable norm, for this problem. 
Finally, it should be stressed that the present experiment does not stand on its 
own. One easily may conceive of more examples, see for instance [1, Section 9.4] 
for a related discussion. 
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TABLE 3. 1 

The entries are -10 log Ilerror at t = 11l. The symbol * denotes 
instability (overflow or near overflow). 

h-1 | 10 20 40 80 160 10 20 40 80 160 

10 -3.23 2.37 2.89 3.27 3.37 1.88 2.35 2.87 3.26 3.37 

20 * * -0.12 3.41 3.83 1.81 2.27 2.82 3.38 3.82 

40 * * * * 3.89 1.77 2.24 2.78 3.36 3.92 

80 * * * * * 1.76 2.22 2.76 3.34 3.93 

160 * * * * * 1.75 2.21 2.75 3.33 3.92 

1 Newton iteration 2 Newton iterations 

4. A General Convergence Result. The remainder of this paper is devoted 
to an investigation of the full convergence properties of the PR scheme (2.2). The 
prefix full indicates that we shall compare the fully discrete numerical solution Un 
directly to the exact PDE solution Uh(tn), without using the intermediate ODE 
solution U(tn). The main objective of our investigation is the order p in time 
appearing in the general error bound 

(4.1) IIUh(tn)-UnII < C1rp + C2 max IIaCeh(t)II (for all r, h > 0, 0 < tn < T), 
O<t<T 

where C1, C2 are constants independent of r and h, and ah is the spatial truncation 
error (2.8). Note that r and h are allowed to tend to zero simultaneously and 
independent of each other (unconditional convergence). We assume in the following 
that Uo = Uh(O). 

Convergence will be proved here by using the stability estimates of Section 3 for 
perturbations 6j. Let U3 = uh(tj) for j = n, n + 1/2 and n > 0. The 6j then stand 
for residual discretization errors, and the En = uh (t)- Un are global discretization 
errors. By a Taylor expansion of uh(t) around t = tn+1/2 we obtain from the first 
equation in (3.1) 

6n+1/2 = liUh(tn+1/2) - TUhh(Sn+1/2) 
- 2Fl(tn+ 1/2 Uh(tn+1/2))- 2F2(tn, Uh(tn)) 

for some intermediate point Sn+1/2 E (tn, tn+1/2). Since uh(t) = F1 (t, Uh(t)) + 
F2 (t, Uh (t)) + Ceh (t), it follows that 

(4.2) 6n+1/2 =- gTUh(Sn+1/2) 
+ [F2(tn+1/2,Uh(tn+1/2)) - F2(tn,Uh(tn))] + 1Cah(tn+1/2). 

In a similar way we get 
( 

n+ 1 = 8TUhh(Sn+1) 

- 2[F2 (tn+ 1, Uh (tn+ 1)) - F2 (tn+1 /2 Uh (tn+1 /2))] + 2 Ceh (tn+ 1/2) X 

where 8n+1 E (tn+1/2,tn+l)E 
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Since uh is the restriction to lh of the exact PDE solution, the terms iuh(s) are 
bounded uniformly in h. Assuming 

(4.4) 11F2(t + T, uh(t + r)) -F2(t, uh(t))II < Cr (for r, h > 0, 0 < t < T -r) 

with constant C > 0, the stability estimate (3.16) directly leads to the following 
convergence result. 

THEOREM 4.1. Let F1, F2 satisfy the one-sided Lipschitz condition (2.10) with 
v < 0. Assume Uh E C2 [0, T] and (4.4) holds. Then there are C1, C2 > 0 such that 

(4.5) IIuh(tn)-Un I < ClT + C2 max Ilah(t)II (for , h > O, 0 < tn < T). 0 
O<t<T 

The assumption (4.4) is a natural one; since F(t,Uh(t)) = ilh(t) -ah(t), a bound 
as in (4.4) will hold in general for the whole gridfunction F(t, Uh (t)), provided only 
that u is smooth. So, what we assume in fact here, is that this smoothness property 
is maintained in the splitting of F. 

The bound (4.5) only shows order p = 1 in time, whereas the order on fixed space 
grids is known to be 2. This discrepancy is caused by the fact that we have avoided 
bounds on partial derivatives of F1 and F2. These contain negative powers of the 
mesh width in space, so that an error bound based on these quantities becomes 
useless when h -O 0. The material presented in the next section, where we examine 
linear problems, elucidates this point. There, we shall also derive bounds (4.1) with 
p=2. 

5. Convergence for Linear Problems with Constant Coefficients. In 
the following we restrict our attention to initial-boundary value problems where 
the differential operators in space are linear and constant in time. The semidiscrete 
system ther becomes 

(5.1) U=f(t, U) = AU + g(t), 

where A is constant. We assume that A can be split, in a natural way, into A1 + A2, 
and (cf. (2.10)) 

(5.2) (Aiv, v) < 0 for all v E RM and i = 1, 2. 

The inhomogeneous term g(t) will contain two contributions, 

(5.3) g(t) = b(t) + f (t). 

Here, b(t) = b1 (t) + b2 (t) is assumed to emanate from the boundary conditions, 
and f(t) represents a source term. For f we shall consider splittings f, (t) = Of(t), 
f2(t) = (1 - O)f(t) with 0 E [0,1], and Fi(t,v) = Aiv + bi(t) + fi(t) for v E RM, 
t E [0, T]. Note that Al, A2 need not commute. 

In the remaining subsections O(,rPhk) will be used to denote a scalar, or vector, 
whose absolute value, or norm, is bounded by CrPhk for all possible r and h, with 
C > 0 a constant independent of r, h. This notation will also be used for k = 0; 
0(rP) thus stands for a term which can be bounded by CrP uniformly for h > 0. 

5.1. The Structure of the Local Discretization Error. In this subsection we shall 
derive, by using the residual errors 6j, an expression for the discretization error 
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which is introduced in the PR-process (2.2) in one single step. By expanding the 
formula (4.2) for 6n+1/2 somewhat further, we get 

6n+ 1/2 r=i-Uh(tn+1/2) + 4TF2(tn+1/2 Uh(tnf+l/2)) + aCeh(tn+1/2) 

+ 4lrT2Uh(81+1/2)- '6 n+1/2 Uh(8n+1/2)) 

for certain intermediate points sn+ /2,5n+1/2 E (tn tn+1/2). Note that now total 
derivatives with respect to t of F2 (t, uh (t)) come into play. Instead of (4.4) we shall 
impose in the following the slightly stronger condition F2 (t, uh (t)) = 0(1), which 
also holds for reasonable splittings, provided u is smooth. Define for t E [0, T] 

(5.4) Wh (t) = -8 Uh (t) + 1 F2 (t, Uh (t)) 

We then obtain, assuming uh (t) to be three times continuously differentiable, 

(5.5a) 6n+1/2 = TWh(tn+1/2) + aCeh(tn+1/2) + 0(r2). 

Similarly, 

(5.5b) 6n+l =-TWh(tn+1/2) + Ceh(tn+1/2) + 0(r2). 

With our choice Uj = Uh(t3), the error rPn+l defined in (3.5) represents the 
discretization error introduced in one single step of the process (2.2) (local dis- 
cretization error). Since A1 and A2 are constant, we have 

TPn+1 = (I - lrA2)-1 [r(rA,)'r6n+1/2 + r6n+l] 

= (I- 1TA2)-1 (I - TAl)-1 [(I + 1rAi)r6n+1/2 + (I - lrA,)r6n+i]. 

From (5.5) and (3.9) we get the following result. 

LEMMA 5. 1. Consider the semidiscrete system (5.1) with A1, A2 satisfying 
(5.2). Suppose Uh E C3[0,T] and jjF2(t,Uh(t))Ij = 0(1) (0 < t < T). Then we 
have for the local discretization error 

) rPn+l = (I - lrA2)1l (I - rAl )1 [r3Al,wh(tn+l/2) + rah(tn+l/2)] (5.6) ~+ 0 (r3). 0 

It should be noted that (5.6) does not yield a bound 11rPn+111 = 0(r3) + 
O(r)IjcIh(tn+l/2)11 in general, since Alwh(t) need not be 0(1) for h 0, unless 
the gridfunction Wh(t) satisfies certain homogeneous boundary conditions imposed 
by A1 (these conditions are unnatural; see for example Subsection 5.2 and [15], [21]). 
The eventual unboundedness of Alwh(t) thus originates from the boundaries, and 
will not show up if one considers pure Cauchy problems with Q = R2. 

We do have, in view of Lemma 3.1, II(I- 1rA2)-Y 11 < 1 and JI(I- lrA1)-,rAI 11 < 
2, which implies 11rPn+l 11 = 0(r2) + O(T)IlCeh(tn+l/2)II. As we shall see in the next 
subsection, such a bound is nearly optimal. At first sight, this only leads to a 
global result IIEnII = 0(r) + 0(1) max IICh (t) I , and this was already established for 
nonlinear problems. In Subsection 5.3 it will be shown, however, that cancellation 
of errors may occur, which then leads to a second-order result jlEnll = 0(r2) + 
0(1) max jCIh (t) jj 
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5.2. Local Error Analysis for a Simple Heat Equation. In this subsection we 
consider the inhomogeneous model problem 

Ut = UXX + uyy + s(x, y, t) on Q, 

(5.7) u(x,y,t) = ur(x,y,t) on r =a, 

u(x,y,O)=uo(x,y) on2UPr, 

where 0 < t < T and Q is the unit square (0,1) x (0,1). Using standard space 
discretization on a uniform mesh, we obtain a system (5.1) for which precise bounds 
on the local errors can be given. First we describe the matrices A1, A2 and vectors 
b1, b2, f appearing in the semidiscrete system. 

Let Qh = {(Xi,Yi): Xi = ih, yj = jh, 1 < i,j < m} with h = 1/(m + 1). 
We identify gridfunctions on Oh and vectors in RM (M = m2) in a natural way, 
assuming row-wise ordering on Q-h. Thus w: Qlh -- RM will also be written as w = 

(wT,. .T ,wT)T with wj = (Wlj,. . ., Wmj)T E Rm, wij = W(Xi, yj), and w(xi, yj) 
will be called a component of the gridfunction w. Further, we shall use, for matrices 
and vectors, the direct (Kronecker) product 0 (see [12, Sections 12.1, 12.2] for 
standard properties). If v = (vi), V = (Vi) E Rm, then v?v = (vliVT, .. ,vmvT)T E 
RM corresponds to the gridfunction with values vjvi at (xi, yj). 

The matrices A1 and A2 can be written as 

(5.8) Al =-I( XQ, A2 =-Q ? I, 

where I is the m x m identity matrix, and Q = h-2 tridiag(-1, 2, -1) E L(Rm) is 
the usual finite difference operator approximating -&/29x2 in one dimension with 
Dirichlet boundary conditions (the first and last row of Q contain nonzero entries 
h-2(2, -1) and h-2 (-1, 2), respectively). The boundary values are incorporated in 
b(t) = b1 (t) + b2 (t) E RM, b1 (t) having nonzero components h-2ur (x ? h, y, t) on 

(X, y) E Q7h adjacent to the vertical boundaries, and b2 (t) with nonzero components 

h-2ur (x, y ? h, t) near the horizontal boundaries. Further, f(t) is the restriction 

of s(x, y, t) to Q2h. 

The matrices Al and A2 are symmetric and negative definite. Thus they satisfy 
(5.2) with respect to the standard inner product (w, WCv) = h2wT?. Besides the 
norm liwli = (w,W)1/2 on RM, we also will use IvI = (hvTv)1/2 for v E Rm. 

For the local errors we have (cf. (5.6)) 

TPn+l = T 3(I - lrA2)-1(I - rAl)'AlWh(tn+1/2) 

+ O(,r)ah(tn+1/2) + 0(r3), 

where Wh(t), defined in (5.4), is a smooth gridfunction. 

LEMMA 5.2. For any -y E [0, 1/4) there is a constant C,, > 0 such that 

11r3(I -_ rA2)-(I - rAl)-1Alwh(t)II < C_r2+ (for r, h > 0, 0 < t < T). 

Proof. Since jj(I - -rA2) -1I < 1, it is sufficient to prove the above bound for 

r3(I - lrA1)-'A1w with w = Wh(t). Let A1 = -A1. This matrix is positive 
definite, and we can write for arbitrary -1 E [0,1/4) 

11r3(I- _lTA - )-1AlwI1 = r2+Y,11(I + 2rA,)"-1(lAi)1-A7WI1. 



94 W. H. HUNDSDORFER AND J. G. VERWER 

The matrix (I + 1 rA1 ) -1 (rA1) 1 - is symmetric with eigenvalues contained in 

{(1 + rA) 1(TA) 1-: A > O} C (0, 2), 

and thus its norm is bounded by 2. We further have A- = I 0 Q-Y. Hence, 
A7 w = ((Q'Ywi)T, (QtWm)T)T and 

m 

IIAwIll2 = h2 (A w)T(A1w) = hE mQ% 2. 
j=1 

It will be shown in the appendix that IQ-'wj is bounded uniformly for h > 0 (with 
a bound only depending on smoothness properties of wj, which are determined 
by smoothness of u, cf. (5.4)). Therefore, we also have IIA7wll = 0(1), which 
completes the proof. 0 

With the above lemma we obtain I,r|p+111 = O(rq) + O(,r)IICh(tn+1/2)II with 
q t 2.25. Note that this is only slightly better than the bound with q = 2 which we 
derived directly from (5.6) for arbitrary problems (5.1) satisfying (5.2). In order to 
demonstrate the sharpness of these bounds, we consider the model problem (5.7) 
with boundary conditions ur = 0, initial value uo = 0, and source term 

s(x, y, t) = W(x)(y) - t(W(x) + (Y)) (Z) = Z(Z - 1) (O < z < 1). 

The exact solution is u(x, y, t) = tq(x)f(y). Since Uh = 0 and b = 0, we have 

Alwh(t) = 1 
AlF2(t,Uh(t)) = Al[A2Lh(t) + f2(t)] 

with f2(t) = (1 - O)f(t). Viewed as gridfunctions, ith(t) and f(t) have values 
4(xfr(y), -O(x) - 4(y), respectively, for (x, y) E Oh. As vectors in RM, they can 
be written as 

Uh(t) = V?V, f(t)=-e?v-v?e, 

where e =(1,... i)T v = (v,..., vm)T E Rm with vi = 1ih(ih-1) (1 < i <m). 

We have Qv = -e. By using standard properties of direct products it follows from 

(5.8) that 

AlA2ith(t)=e?e, Alf(t)=-e?e+v?Qe. 

Since no space errors are present here (the solution is quadratic), relation (5.9) 
gives 

rPn+l = (1 -_)r3 (I- _rA2)-1 (I- 1rA 1)-1 [v X Qe] + 0(r3). 

It follows that 

rPn+l = 4(1 -_ ),r3 [(I + 2rQ) -v X (I + 1rQ)YQe] + 0(,r3), 

and finally 

11-Pn+l1= 1 (1 -)r3 Ij(I+ 2 rQ)-v 1(V + 1 rQ) 1QeI + ( r3). 

From (I + lrQ)-1v = v + 1ir(I + lrQ)-1e = v + 0(r), we see that there is 
a constant C' > 0 such that I(I + 1.rQ) 1vI > C' whenever r > 0 is sufficiently 
small. In the appendix it will be shown that there exists a C" > 0 such that 

I(I+ lrQ)-YQel > C"lr-3/4 for all h > 0 sufficiently small and r/h2 bounded away 
from 0. For such r and h, and 0 54 1, we thus have 

(5.10) IIrPn+1jj > Cr225 

with C > 0 independent of r and h. 
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In case 0 = 1 no order reduction occurs for this specific example with ur = 0; 
we get IIkPn+1II = 0(r3) as on fixed space grids, since then Wh(t) vanishes near the 
vertical boundaries, so that AiWh(t) = 0(1). For more complicated examples with 
time-dependent boundary conditions, the order will reduce also if 0 = 1. 

The observation that inhomogeneous terms cause local order reduction seems to 
originate with D'Yakonov [4]. Fairweather and Mitchell [5] introduced a correction 
term which restores the local order; they considered (5.7) with s = 0 and time- 
dependent boundaries, but as we saw above, such a correction is also necessary if 
ur = 0, s 5$ 0. The correction consists of replacing in the PR scheme bi (t) by 

bi (t) = b1 (t) - c(t), c(t) being the correction term still to be specified. This cor- 
responds to a change in the boundary values for the intermediate solution Un+1/2. 

With this correction we derive, in the same way as before, the expression for local 
errors 

51)Pn+ 1= (I - rA2)-1(I - rA1)-r3vh(tn+l/2) 

+ 0(r)ah(tn+1/2) + 0(r3), 

where now 

(5.12) Vh(t) = AlWh (t) + T2 C(t). 

The gridfunction wh (t) is smooth, and thus all components of A1wh(t) are 0(1), 
except those corresponding to a gridpoint adjacent to the vertical boundaries. Con- 
sider the gridpoint (x1, yj) near the left boundary. There we have 

[AlWh(t)]lj = h-2'(-2w,j(t) + w2j(t)). 

The correction c(t) can now be used to compensate for the missing value woj(t). 
Thus we define 

Cjj(t) = r2h-2wo1(t), 

(5.13) wo3(t) = - iioj(t) + h-2(itoj+1(t) - 2itoj(t) + itoj - 1(t)) 

+ (1 - 0)sj(t), 

where uoj(t) = u(0,yj,t), soj(t) = s(0,yj,t). In a similar way we define cmj(t) to 
compensate for the missing values near the right boundary, and we take cij (t) = 0 
for gridpoints with 1 < i < m. This causes Vh(t) = 0(1), so that pn+ = 

0(r3) + O(,r)ah(tn+1/2). 
The correction (5.13) slightly differs from the one in [5]. The reason is that 

we started from the particular form for the local error with Wh given by (5.4). 
Since Ij(I - ArA1)-1rAII = 0(1), it follows that (5.11) also holds with Vh(t) = 

A1i7(t) + r-2c(t), 

iwi(t) = - _r2 [Uh (t - r) - 2Uh (t) + Uh (t + f r)] 

+ T 1[F2(t + jr,uh(t + it)) - F2(t - T,Uh(t- -1))] 

This leads to (5.13) with iioj(t) and itoj(t) replaced by standard differences, which 
is then the same as the original correction of Fairweather and Mitchell [5]. Gener- 
alization of this boundary value correction to a large class of initial-boundary value 
problems can be found in [17]. 

5.3. Cancellation of Local Errors. Let q be the order in time of the local dis- 
cretization errors. One then naively expects order p = q - 1 for the global errors, 
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as a result of addition of all the local errors. For the example of Subsection 5.2 this 
would give p = 1.25 only, instead of second-order in time as on a fixed space grid. 
In this subsection it will be shown that under suitable assumptions we still have 
p = 2, because of cancellation of local errors. In other words, the local errors suffer 
from a reduction in order, but in the transition from local to global, this reduction 
is annihilated. A similar behavior can be observed with the implicit midpoint rule, 
and to some extent, with other Runge-Kutta methods [15], [21]. A comprehensive 
analysis for the implicit midpoint rule can be found in [11]. The proof of Theorem 
5.3 below was inspired by this analysis. 

We consider again the general linear problem (5.1), but it will be assumed now 
that there exists a constant C > 0 (independent of r, h), such that 

(5.14) IIA-A1j I < C, 

(5.15) IIRnI ? C for all n > 0 with tn E [O,T]. 

Here R = (I - lrA2)>1r(rA1)(I + lrA2) is the matrix governing stability of the 
PR scheme (cf. formula (3.6)). Thus (5.15) is a Lax-Richtmeyer type condition 
for stability [14]. If A1, A2 are commuting, negative definite matrices, then both 
(5.14) and (5.15) hold with C = 1. The results below are thus applicable to the 
heat equation with standard space discretization on a uniform mesh, which we 
considered in the previous subsection. 

THEOREM 5.3. Suppose the conditions of Lemma 5.1 are satisfied, and (5.14), 
(5.15) hold. Then there are constants C1,C2 > 0 such that 

(5.16) IIUh(tn)-Unll < C1,2 +C2C max IIaCh(t)II (for all i, h > 0, 0 < tn < T) O<t<T 

Proof. Consider the recursion for the global errors En = Uh(tn) - Un, 

En+1 = REn + TPn+1 (n > 0) 

(cf. (3.5)). The local errors, given by (5.6), can be written as 

TPn+1 = r3(i -_ rA2)1(I - lrA,)-1Awh(tn+l) + O('r)Ch(tn+1/2) + 0(r3). 

Note that Wh is evaluated here at t = tn+1. For the proof of the theorem we may 
omit the terms O('r)ah(tn+1/2) + 0(i-3), since these will give only a contribution 
0(1) max IICeh(t)II + 0(r2) to the global bound. 

We define, for all n > 0, 

P-n = tA-Alwh(tn), Pn 
= en + rf 

Using the equality R - I = (I - rA2) -1 (I - rA1)-1 rA, we get 

Pn+l = (R - I)Pn+i- 

Therefore, the en satisfy the recursion 

in+i = Rin + rR(Pn+l - Pn) (n > 0). 

The stability assumption (5.15) provides the global estimate 

I nI|| < Clloj|| + Ctn max IIPk+1 - Pkll1 
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Since we have, in view of (5.14), 1IEk- kII = IiTpkII = 0(r2) and IIPk+1-pkII = 0(r2) 
for all k > 0, the second-order result for IkEnII now follows. 0 

Lest we miss the obvious, the introduction of the new errors E, Pn in the above 
proof is redundant if A1wh(t) = 0(1) uniformly for h -- 0. We can then prove 
(5.16) (by using the stability result (3.15)) without the assumptions (5.14) and 
(5.15). However, the material presented in Subsection 5.2 shows that in general 

IIAtwh (t)1 - oo for h -- 0, unless the PDE solution Uh and the inhomogeneous 
term f2 meet additional conditions near the boundary r. These conditions are 
unnatural, in the sense that they are only imposed by the PR scheme and they are 
unrelated to smoothness of the PDE solution. 

Convergence results for general ADI methods applied to linear initial-boundary 
value problems were obtained by Douglas and Gunn [2]. They considered homoge- 
neous boundary conditions, in which case it can be shown that the local error of 
the PR method has the same order as the local error of the Crank-Nicolson type 
scheme 

(5.17a) (I - lrA)Un+1 = (I + -rA)Un + 'rqn 

with inhomogeneous term 

(5.17b) O5n = f1 (tn+1/2) + 2 f2 (tn) + 2 f2 (tn+ 1) - rA1(f2(tn+1) -f2(tn)) 

Because of this special inhomogeneous term, the same additional conditions show 
up if one tries to prove second-order convergence for this scheme. Moreover, the 
approach of Douglas and Gunn is hard to generalize for inhomogeneous boundary 
conditions. 

As an illustration of the local order reduction and cancellation of local errors, 
we consider the simple problem 

(5.18) Ut = (1 + y)Uxx + uyy + s(x, y, t) 

on the unit rectangle with Dirichlet boundary conditions. The source term 
and initial-boundary values are chosen such that the exact solution is u(x, y, t) = 
exp(x + y + t). In space, standard discretization was used on a uniform mesh with 
grid distance h in both directions. The PR scheme (2.2) was applied with r = h 
and equal distribution of the source term (ft = f2 = f /2; the choice ft = f, f2 = 0 

leads to similar results). The following table shows the number of correct digits 
10 log IIEnII for n = 1 (local error) and n = N, rN = 1 (global error). 

TABLE 5.1 

Errors for PR scheme applied to (5.18) with r = h. 

r-1 5 10 20 40 r-i 5 10 20 40 

local 2.03 2.58 3.18 3.80 global 1.68 2.20 2.76 3.35 
error error 

One nicely sees second-order, approximately, for both local and global errors (in- 
crease of 0.6 upon step halving). We note that since the continuous operators 
(1 + y)02/0x2 and a2/9y2 do not commute, the matrices A1 and A2 will not com- 
mute either. Therefore, we do not know whether the stability condition (5.15) 
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holds. The numerical results, however, indicate that the conclusions of Theorem 
5.3 are valid here. 

With a Fairweather-Mitchell type correction we would obtain third order locally, 
but still second order for the global errors. Although this correction technique does 
not increase the global order, the numerical results of Sommeijer et al. [17] indicate 
that in many cases the numerical approximations will become more accurate (the 
error constant Ci in (5.16) may be smaller for corrected schemes). 

Acknowledgment. The authors are grateful to Joke Blom for carrying out the 
numerical experiments. 

Appendix. In this appendix some technical results will be derived concerning 
the finite difference operator approximating _92l/x2, which were used in Subsec- 
tion 5.2. Similar results for the continuous operator were obtained by Brenner, 
Crouzeix and Thomee (RAIRO Anal. Numer., v. 16, 1982, pp. 5-26). The discrete 
case has some minor additional difficulties. 

Let m E N and h = 1/(m + 1). Consider the m x m matrix 

2 - 1 
-1 2-1 

-1 2-1 
-1 2, 

This matrix has the eigenvalue-eigenvector decomposition 

Q = VAV-1 

with 

V = [v1,v2,* ... ,Vm], vj = V2(sin(jhir),sin(2jhir),. . .,sin(mjhir))T E Rm 

and 
A = diag(Al, A2,... A Am), Aj = 4h-2 sin2(jhir/2). 

We have hvTvj = 6ij (Kronecker delta). Therefore, hVTV = I, and 

Q = hVAVT. 

On Rm we consider the inner product (v, w) = hvTw and norm Iwj = (w, W)1/2. 

For any w E Rm and i: C -- C, analytic on the positive real axis, we have 
m 

(Q) W= E(vj, w)V) (Aj)vj, 
j=1 

and, since (vi, vj) = &ij, it follows that 
m 

IV)(Q)w12 = E I(Vj, W)'tP(A)y12. 
j=1 

For any two real functions f, g we will use the notation f(x) - g(x) (x l 0) if 
there are positive numbers C0o, C, and H such that Cog(x) < f(x) < Cig(x) for 
O < x < H. Further, xj = jh for j = 1, 2, ..., m. 
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LEMMA 1. Suppose f E C(0,1], Iy > 0 and f(x) x-1 (x I 0). Then, for 
h 1 0, 

m 
f 1 if y= 

< 
1, 

hEf(jh) 
- log(l/h) if -y = 1, 

j=j th"-5 if 'y>1. 

Proof. Since we can split f into a monotonically decreasing part (' x- for 
x 1 0) and a bounded remainder, it is clear that we may assume without loss of 
generality that f itself is monotonically decreasing. Then 

m 1 
hZf(xj) > f(x)dx. 

j=1 

On the other hand, 
m m1 

h ; f(xj) = hf(h) + h E f(xj) < hf(h) + 1 f(x) dx. 
j=1 j=2 h 

We have hf(h) h'- (h I 0). The integral f,h f(x) dx is - log h (h 1 0) if 
-y= 1, and- 1 + hl-' (h I 0) if y5 1. 0 

In the remainder, ej will stand for the vector in Rm with jth component equal 
to 1 and the other components 0. The vector (1,1,..., 1)T E Rm will be denoted 
by e. 

LEMMA 2. Let -y > 0. We have 

sup tQ5el < oo if and only if y < 1/4. 
h>O 

Proof. Since Qe = h2 (e1 + em), it follows that 
m 

Q'e = h-2Q'-1(el + em) = h-2 [h(vjl + Vjm]Alvj 
j=l 

with vji = 2 sin(ijhir) the ith component of vj. If j is even, we have vjl +vjm = 0, 
while vjl + vjm = 2vj3 if j is odd. In the limit h 1 0, we thus obtain 

m m 

jQ-'el2 = h-2 E I(Vjl + Vjm)A7-112 2h-2 E lvjlAj7112 
j=l j=1 

m 

- 42y- 1 h2-4y E I sin(jh7r) sin(jh7r/2)21212 
j=1 
m 

= 42'yhl'-4h E cos2 (jh7r/2) sin(jh7r/2)45y2. 
j=1 

From Lemma 1 we see that IQ'eI2 - h'-4(1+h4--) (h 1 0) for y # 1/4, whereas 

Q'ye12 --logh(h10)for-y=1/4. 0 

LEMMA 3. Let q E C3C[o 1] and w = (Wl,W2,. ..Wm)T with wj = q(xj) for 
1 < j < m, m E N. Suppose ̂ y < 1/4. Then suph>O IQ7wI < 00. 

Proof. We have 

Qw = (a, + h-2bi,a2,a3,. . . ,am + h-2bm)T 
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with aj = h-2(-O(xj-l)+20(xj)-qO(xj+l)) 0-q"(xj) and b1 = X (0), bm = (1) 
Let a = (al, a2, ...,am)T. Then 

Q = Q'Y1a + h-2Q-1 [ble, + bmem]. 

Since Q is positive definite with eigenvalues larger than 1, the vector Q'-la is 
bounded, uniformly for h > 0, for any a < 1. In the proof of Lemma 2 we saw that 
h-2Q- 1ej - = 1 or m) is also bounded uniformly in h, provided that Iy < 1/4. 0 

COROLLARY 4. Let w be as in Lemma 3. For any -y E [0,1/4) there exists a 
constant Ca > 0 such that 

(I + 2 rQ)-1QwJ < C.- T1 (for all r, h > 0). 

Proof. The matrix (I + -rQ)' (-Q)1-'y is symmetric with eigenvalues in the 
interval (0,2), so that the norm of this matrix is bounded by 2. Since IQ'Iwl is 
uniformly bounded for h > 0, the assertion follows from the inequality 

1(I + -rQ)-'Qwl < rT-' j(I+ "rQ)-1(rQ)'-fl IQWI. 0 

LEMMA 5. Let a > 0, and assume r/h2 > a. Then there exists a constant 
C > 0 such that for all T > 0 

I (I + _rQ)-1 Qel > CT-314. 

Proof. It is sufficient to consider h > 0 sufficiently small. Let 

y(T, h) = {(I + -rQ)-1Qel2 

Similarly as in the proof of Lemma 2, we obtain for h 10 
m m 

u(T, h) = h2 E I(Vjl + Vjm)(1 + 1 
TAj) 

- 
'j2 2h2 1 + ~iAj)' 12. 

j=1 j=1 

It follows that for arbitrary , > 0 and h > 0 sufficiently small, 

,u(Tih) >4(1 + -20 h -21:sin 2(jh7r), 
jEJ,3 

where Jp = {ij: 1 ,6 < rA < 3}. We take 3 = 2a, so that 3h2/4r < 1/2. Since 

TAi = 4ih-2 sin2(jhr/2), the index j belongs to J,B if and only if 

,6h2/8r < sin2(jhr/2) < ,h2/4T, 

that is, 
2(irh)-l arcsin fh/#V8r < j < 2(irh)-' arcsin f/l2/74. 

For each j E Jg, we thus have sin2(jhir) > 13h2/8T. Inspection of the graph of the 
arcsin function shows that the number of terms in Jf is h- h' -v'F = IT 1/2 (for 
h 1 0). From the above lower bound for ,u(r, h) it now follows that there exists a 
constant C > 0 such that 

,u(r, h) > C2h-2 (h2/r)rT-1/2 = C2--3/2 

for h > 0 sufficiently small. 0 
Remark. The upper and lower bounds of Corollary 4 and Lemma 5 also hold if 

(I + 1rQ) 1 is replaced by i/({Q) with 4 an arbitrary rational function satisfying 
4'(oo)=Oand 1,0(z)jI < 1 forzEC,Rez>0. 



THE PEACEMAN-RACHFORD ADI METHOD 101 

If w is the restriction to {xj} of a smooth function 0: [0,1] -+ R with q(O) = 
q(1) = 0, then a bound as in Corollary 4 also holds for j0(rQ)Q2wI (sharpness then 
follows by considering 0(x) = x(x - 1)). 0 
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